Refractions

- DR6000 Series
- DR6000 Series / Accessories
- AR2008
- AR4
- PR21
- PRB21
- DR301-95
- DR201-95
- DR101-60
- HR Series
- ER60 Series
- Refractometer Accessories

WARRANTY EXTENSION
2 + 1 year
Please register on our website
www.kruess.com
What is Refractometry?

You’ve lost the key to your locker in the swimming pool. You spot it lying on the bottom of the shallow part of the pool, reach in to take it – and your hand misses. The refraction of light at the boundary of two different materials can be explained as easily as that. If the swimming pool was filled with salt water, the image of the key would have been shifted even more.

Light moves at different speeds in materials of different densities. In a vacuum, it reaches 299 792 458 m/s, however in water “only” 225 000 000 m/s. If a ray of light with a defined wavelength strikes a boundary between one medium to another at a fixed angle, the angle of the ray will change according to the refractive indices of the media. Snell’s law describes this phenomenon:

\[n_1 \cdot \sin \delta_1 = n_2 \cdot \sin \delta_2, \]

where \(\delta_1 \) is angle \(\alpha \) and \(\delta_2 \) is angle \(\beta \).

The refractive index of water at 20 °C is 1.33 nD. Ice has a refractive index of 1.31 nD. Adding sugar to pure water changes the refractive index, depending on the amount added. Adding salt changes the refractive index as well, but in relation to the concentration. This means that if pure water at 20 °C does not have a refractive index of 1.33, it has been “polluted” with some other material. As a rule, determining the refractive index of a substance is a quick and reliable check of its purity.

Sunflower oil diluted with cheaper oil can be detected just as easily as the sugar content of marmalade during the production process.

Another example: cyclohexane at 20 °C has the same refractive index as a 52.9 % sugar solution. This shows that no statements on the composition or possible admixture of a substance can be made without knowing exactly what it is.

Temperature is one of the greatest factors which can influence the refractive index. Each substance reacts differently and specifically to temperature.

\[\Delta \text{nD} = 0.00015/\text{°C} \]

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Refractive Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0 °C</td>
<td>1.39986 nD</td>
</tr>
<tr>
<td>20.1 °C</td>
<td>1.39989 nD</td>
</tr>
<tr>
<td>21.0 °C</td>
<td>1.39971 nD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Refractive Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0 °C</td>
<td>1.4801 nD</td>
</tr>
<tr>
<td>20.1 °C</td>
<td>1.47997 nD</td>
</tr>
<tr>
<td>21.0 °C</td>
<td>1.47965 nD</td>
</tr>
</tbody>
</table>

A temperature corrected scale in a refractometer must always be specific to a substance, and can never be considered to be universal.

Temperature Refractive Index

20.0 ºC 1.39986 nD
20.1 ºC 1.39989 nD
21.0 ºC 1.39971 nD

40 % Brix Sugar Solution

\[\Delta \text{nD} = 0.00015/\text{°C} \]

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Refractive Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0 °C</td>
<td>1.39986 nD</td>
</tr>
<tr>
<td>20.1 °C</td>
<td>1.39989 nD</td>
</tr>
<tr>
<td>21.0 °C</td>
<td>1.39971 nD</td>
</tr>
</tbody>
</table>

Paraffine Oil

\[\Delta \text{nD} = 0.00036/\text{°C} \]

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Refractive Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0 °C</td>
<td>1.4801 nD</td>
</tr>
<tr>
<td>20.1 °C</td>
<td>1.47997 nD</td>
</tr>
<tr>
<td>21.0 °C</td>
<td>1.47965 nD</td>
</tr>
</tbody>
</table>

A temperature corrected scale in a refractometer must always be specific to a substance, and can never be considered to be universal.

Temperature Refractive Index

20.0 ºC 1.4801 nD
20.1 ºC 1.47997 nD
21.0 ºC 1.47965 nD

Under constant conditions with known material properties, the formula can be manipulated to calculate the refractive index of an unknown second medium. The angle of incidence and angle of refraction can be measured, the refractive index of one of the materials (the prism of the refractometer) is known, and so, after adjusting the formula, the refractive index of the unknown material is a matter of simple mathematics. Measurement of the refractive index depends on the temperature and wavelength of the light. Determination of the refractive index can provide information on the purity of a substance, but not its exact composition.
DR6000 Series | Digital Refractometers

Versatile and powerful!

Digital laboratory refractometers from A. Krüss Optronic are setting new benchmarks on many counts. An intuitive touchscreen presents a clear overview of all data and functions and the integrated SQL database stores all data and allows external access via a network or standalone PC.

The refractive index is a parameter in quantitative or qualitative analysis and quality assurance. Degrees of polymerisation can often be monitored frequently, quickly and cost-efficiently without turbidity or the colour of the sample affecting measurement precision.

There is no longer any elaborate preparation of samples necessary. The sample is simply placed on the measuring prism and the measurement process is started.

The flat stainless steel plate is easy to clean and is highly resistant to aggressive substances. As the refractive index depends on the temperature of the sample, the refractometer should be tempered. The DR6000 series is thus available with integrated electronic temperature control by means of a Peltier element. This type of temperature control is faster and more reliable than water bath thermostats.

For continuous measurements or series of measurements with many samples and high volumes of samples, devices with flow measurement cells are available. A sample can thus displace the previous one, nonetheless achieving an accurate measurement result without cleaning the measuring prism after every measurement.

The DR6000 series of refractometers are robust, low-maintenance and also very quiet - an often underestimated quality for equipment used continuously in a laboratory.

An integrated SQL database stores up to 99 user-defined measurement methods and the last 999 measurement values with all associated data. You can select the stored results by means of various filters and export data in XLS- or CSV-format on a USB flash drive, print directly or convert to a PDF document for printing from a PC.

By connecting a printer to the RS-232 interface, results can be printed out as soon as they are measured. The refractometer can be connected to a PC or linked to a network via an Ethernet interface. If there is access to the Internet, remote maintenance and fault diagnosis are also possible.

Optional user management functionality with three authorisation levels protects the settings from being changed unintentionally. The DR6000 series thus meets all GLP requirements and is best suited for use in FDA-regulated situations.

Special KrüssLab software also enables the instrument to be controlled from a PC. This exactly replicates the intuitive touchscreen of your Krüss unit, allowing you to "operate" it directly from the PC. Measured values are copied from the device into the KrüssLab database. You then have permanent access to more than the last 999 results. This data can be accessed even when the Krüss unit is switched off.

The refractometers in this series meet the guidelines of ASTM D1218 and D1747.

Special features

- Bright touchscreen display with intuitive operation in 6 languages
- Very efficient integrated Peltier temperature regulation with high precision (T-Models)
- Fast and easy cleaning of the probe
- High resolution LED with 100,000 hour service life
- Very quiet operation
- Compact powder-coated metal housing
- 99 different methods and customer tables (individual tables can be set)
- Data display of all important settings and measurements
- User management functionality (password-protected) can be activated
- Integral SQL database for data storage
- USB interface for data export and firmware updates and for connecting keyboard or barcode scanner
- RS-232 interface for serial printer
- Ethernet interface for direct connection to a PC (with possibility of remote maintenance via internet)
- PDF-export
- Direct printing possible on a PostScript-enabled network printer
- Full cGMP/GLP capability: password protection, data backup, automatic printout or data output in CSV-format
- Meets the relevant international standards such as Pharmacopoeia, OIML, ASTM
- NIST-compliant calibration certificate
- IQ/OQ/PQ-commissioning possible
- Extremely low maintenance and long life
- 3 year warranty with registration

Fields of application

Determination of mixing ratios, quality and quantity inspection in the following industries:

- Beverages
- Food
- Sugar / sweeteners
- Chemicals
- Flavours
- Petrochemicals
- Cosmetics / hygiene
- Metalworking
- Pharmaceuticals
- Water / effluent
- Education / research
- Purity control
- Quality control

Main measuring display

This is where the measurement is carried out and the results as well as the important parameters are displayed.

- Measured value: refractive index, °Brix, user-defined unit
- Target and actual temperature
- User
- Method
- Temperature compensation
- Status information

Mode and method menu

In the mode menu any user can adjust settings.

- Single or interval measurements
- Mark measurements as QC measurements
- Define sample numbers

Where the user administration function has been activated, only administrators can make changes in the method menu.

- Name of method
- Unit
- Target temperature
- Temperature compensation (ICUMSA or user-defined)

Results menu

The last 999 measurements are stored in the results menu along with all associated settings and parameters. Columns can be displayed or hidden and the results filtered, printed or exported.

- Date and time
- Method
- User
- Sample number
- Target and actual temperature
- Measured value
- Unit
- etc.
Specifications

<table>
<thead>
<tr>
<th>Model / Article-No.</th>
<th>Range 1.3200 – 1.5800 nD 0-95 %Brix</th>
<th>Range 1.3200 – 1.7000 nD 0-95 %Brix</th>
<th>Resolution 0.0001 nD 0.1 %Brix</th>
<th>Resolution 0.00001 nD 0.01 %Brix</th>
<th>Accuracy 0.0001 nD 0.1 %Brix</th>
<th>Accuracy 0.00002 nD 0.02 %Brix</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR6000</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
</tr>
<tr>
<td>DR6100</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
</tr>
<tr>
<td>DR6200</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
</tr>
<tr>
<td>DR6300</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
</tr>
</tbody>
</table>

Common Specifications

<table>
<thead>
<tr>
<th>Measurement modes</th>
<th>Scales</th>
<th>Calibration</th>
<th>Measurement time</th>
<th>Prism</th>
<th>Illumination</th>
<th>Incubation</th>
<th>Housing</th>
<th>Analysis basin</th>
<th>Display</th>
<th>Operation</th>
<th>Measured data storage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LED 590 nm</td>
<td>≤4 s</td>
<td>Cast aluminium, powder-coated</td>
<td>Stainless steel</td>
<td>LCD TFT 5.7” , 640x480 pixel color display (VGA)</td>
<td>Touchscreen</td>
<td>999 measurements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>Working voltage</th>
<th>Protection class</th>
<th>Temperature measurement</th>
<th>Temperature resolution</th>
<th>Temperature measurement accuracy</th>
<th>Temperature compensation</th>
<th>Temperature sensor</th>
<th>Sample temperature</th>
<th>Ambient temperature</th>
<th>Temperature control (except T-Models)</th>
<th>Dimensions in cm</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232 (printer), USB (data export, firmware updates), Ethernet (SIMS, remote monitoring)</td>
<td>90–250 V, 50/60 Hz</td>
<td>IP65 for analysis basin</td>
<td>5–90 °C</td>
<td>0.1 °C</td>
<td>±0.05 °C</td>
<td>ICUSSA, User defined 3-Point</td>
<td>PT100 Sensor</td>
<td>10–80 °C</td>
<td>15–35 °C</td>
<td>Thermostat connections</td>
<td>21.5 x 15 x 34.5</td>
<td>5 kg</td>
</tr>
</tbody>
</table>

All models are also available in the following versions:

<table>
<thead>
<tr>
<th>T Model: with built-in electronic Peltier thermostat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model / Article-No.</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>DR6000-T</td>
</tr>
<tr>
<td>DR6100-T</td>
</tr>
<tr>
<td>DR6200-T</td>
</tr>
<tr>
<td>DR6300-T</td>
</tr>
</tbody>
</table>

F-Model: with flow cell

The flow cell is a variation of the DR6000 series and is indicated by the suffix “F” (e.g. -F, -TF). It consists of a measuring cell cover fixed with robust stainless steel brackets over the prism, with two tubes for inflow and outflow. All parts that come into contact with the sample (tubes and measuring cell cover) are made of PTFE (Teflon). Combined with the sapphire prism equipped with a Peltier thermostat, precise and stable temperature control is assured. The UNF-thread hose coupling is made of PEEK.

The flow cell allows the unit to run in automated mode using a peristaltic pump or autosampler. It can also be filled by means of injection if required. Thanks to its special geometry (forced venting), no air bubbles can become trapped.

As a result of the small size of the micro-measuring cell, this version is particularly suitable for applications in which it is important for samples to be in small volumes (e.g. in the flavourings industry).

The measuring cell can be removed easily and the sample thus placed directly on to the prism.

TF-Model: with integrated electronic Peltier thermostat AND flowcell
TF models are a combination of T- and F-models

Automated sample injector - Autosampler

AS80
The refractometer, fitted with a flow-through cuvette, and the density meter can be completed by means of an automated sample injector system.
This consists of a rotor sampler, a peristaltic pump and a constriction-tube valve as toggle switch. The sampler uses a plate with 89 positions for sample tubes in polystyrene with dimensions Ø 16 x 100 mm. These can accept sample volumes of 8 ml. Peristaltic pump and valve are integrated into the sampler and are controlled via this by the measuring device. The heads of the two assemblies are situated on the right-hand side of the unit.
The sample is transported into the measurement system by means of the peristaltic pump. If the measured value is stable and is recorded, the valve toggles from Sample to Standby and the system is rinsed. This minimises spreading and measurement errors. To take the following measurement the rotor is moved to the next sampling position and the valve set back to sample mode.
AR | Abbe Refractometers

The modern classic!
The Abbe refractometer was developed in 1869 by Ernst Abbe and is used to determine the refractive index otherwise known as the index of refraction. It is based on the principle of total reflection which occurs at the boundary between the prism and the sample. The refractive index of the prism determines the upper limit of the measurement range, as it always has to be greater than that of the sample. With the AR Series, Krüss has two models of the Abbe refractometer in its range. These are easy to use and require only a small sample volume. These devices allow samples in the form of solids or pastes to be measured just as easily as liquids. Furthermore, colouration or clouding scarcely affect the measurement result. Besides the refractive index, the solid content can be determined in %Brix. To determine the refractive index of solids, a contact liquid with an average refractive index is required. The refractive index of a sample is dependent on the wavelength of the light used for the measurement and on the temperature. As the temperature increases, the refractive index drops. That is why our Abbe refractometers have thermostat connections on both the illumination prism as well as the measurement prism.

Fields of application
Determination of mixing ratios, quality and quantity inspection in the following industries:
- Beverages
- Food
- Sugar / sweeteners
- Chemicals
- Flavours
- Petrochemicals
- Cosmetics / hygiene
- Metallurgy
- Pharmaceuticals
- Water / effluent
- Education / research

AR2008 | Digital Abbe Refractometer

The digital Abbe refractometer AR2008 has an electronic data processing system. The refractive index or Brix value is shown on an LCD display together with the temperature. A serial interface allows measured values with date and time to be transferred directly to the PC or printer. An automatic temperature compensation feature is optionally selectable. The AR2008 has a thermostat connection for prisms and a built-in light source (589 nm) for the measuring prism. The AR2008 is extremely sturdy and is ideally suited for use in a harsh environment. It is supplied with a glass calibration plate, contact fluid and a screwdriver as well as a dust hood.

Specifications
Measurement range	1.3000–1.7200 nD 0–95 %Brix
Accuracy	±0.0002 nD ±0.1 %Brix
Resolution	0.0001 nD 0.1 %Brix
Temperature Range	0–99 °C
Temperature resolution	0.1 °C
Aut. Temperature compensation	0–90 °C
Interfaces	serial RS-232 9600 Baud serial RS-422 9600 Baud
Power supply	110/230 V 50/60 Hz 40 W
Dimensions in cm	12.0 x 29.0 x 25.0
Weight	5 kg

AR4 | Analogue Abbe Refractometer

The AR4 offers readings via ocular. It has an adjustable scale, temperature controlled prisms, and thermostat connections for prisms. The refractive index of a sample depends on the wavelength of the light used in measurement. That is why we supply our AR4 with LED illumination for the measuring prism. This has the standard wavelength of 589 nm and has a very long service life (>100.000 h). Refractometers also have scale illumination. Since the refractive index is also temperature-dependent, our Abbe refractometers feature thermostat points on both the lighting and the measurement prisms. A digital thermometer is supplied. Other wavelengths are available on request.

Our Abbe refractometers can easily be checked and calibrated with the calibration plates provided and comply with all requirements of ASTM D1218.

Specifications
Measurement range	1.3000–1.7000 nD 0–95 %Brix
Accuracy	±0.0002 nD ±0.1 %Brix
Scale division	0.0005 nD 0.25 %Brix
Thermometer	Digital thermometer: -40–120 °C Scale illumination, LED illumination (590 nm) for prism
Illumination	Readings via ocular
Power supply	110/220 V switchable
Dimensions in cm	10.0 x 27.0 x 19.0
Weight	2.5 kg
Special features	Adjustable scale, prisms can be temperature-controlled, thermostat connections for prisms
Process refractometers are built directly into pipework and boilers or operated in the bypass. They are ideal for process monitoring, control and product separation in a variety of industries (chemicals, beverages, food, and sugar).

Why use Refractometers in pipelines?
The monitoring of refractive index is a popular method of inline quality control in many process industries, including pulp and paper, food and beverage, chemical and pharmaceutical, and wastewater. It provides real-time data for quality control and Good Manufacturing Practice (GMP), and can be used to monitor qualities such as concentration of a solution, density of a fluid, or % Brix. An inline process refractometer is installed directly into pipework or a boiler, with standard connections for easy assembly. The alternative bypass process refractometer analyses a stream of fluid drawn off the main process run.

Fields of application

Determination of mixing ratios, quality and quantity inspection in the following industries:
- Beverages
- Food
- Sugar/sweeteners
- Chemicals
- Flavours
- Petrochemicals
- Cosmetics / hygiene
- Metalworking
- Pharmaceuticals
- Water / effluent
- Education / research

Special Features

- Excellent value for money
- Wide measurement range from 1.3300 – 1.5600 nD; 0–95 %Brix
- Adjustable measurement interval (min. 3 s)
- Password-protected
- Prism in the sample chamber is easy to clean
- User-friendly interfaces for direct connection to a PLC
- Very easy to install, no special requirements

PRB21 Specifications

The bypass process refractometer PRB21 fills the gap between the DR6000 series of digital laboratory refractometers and the process refractometer PR21. The sample is fed into the measurement chamber through a stainless steel bypass. The prism is made of particularly scratch-resistant sapphire. The PRB21 is generally connected to a PLC and provides continuous process control. Small sample volumes suffice for this. The measurement interval is adjustable (>3 s) and the measurement result is not affected by either the colour or the turbidity of the sample.

The PRB21 has various interfaces and can also be supplied with PROFIBUS on request. A display is also available for visual monitoring. Automatic temperature compensation can be obtained by means of the internal temperature sensor and the measured temperature fed to the PLC.
DR301-95, DR201-95, DR101-60 | Digital Hand-held Refractometers

For mobile use - with a large measurement range!

Quick, precise measurement results simplify incoming goods inspection, optimise quality assurance and reduce work processes. The devices can easily be carried on inspection rounds, as they are lightweight and fit into any lab coat pocket.

Fields of application

Determination of mixing ratios, quality and quantity inspection in the following industries:
- Beverages
- Food
- Sugar / sweeteners
- Chemicals
- Flavours
- Petrochemicals
- Cosmetics / hygiene
- Metalworking
- Pharmaceuticals
- Water / effluent
- Education / research

Special features

- Large measuring range
- High precision
- Calibrated with water
- Display of measurement results in various units
- Automatic temperature compensation
- Robust casing
- Little weight

DR301-95

The digital handheld refractometer DR301-95 has more functions than a simple handheld refractometer and at the same time is more cost-effective than a desktop unit. Besides the refractive index, sugar and salt scales, up to two other user-defined scales can be programmed. To do this, the handheld refractometer can be connected to a PC via a serial interface. The software supplied with it allows results to be managed and printed out. While the instrument can be operated as a mobile unit with a 9 V block battery, the optionally available power supply unit turns the DR301-95 into a small laboratory refractometer. The sample plate is made of stainless steel and is so flat that it can be cleaned quickly and easily. The instrument is calibrated simply with distilled water and has an optional temperature compensation feature. For incoming goods control applications, an upper and lower tolerance alarm can be entered.

<table>
<thead>
<tr>
<th>Special features</th>
<th>DR301-95</th>
<th>DR201-95</th>
<th>DR201-95-OE</th>
<th>DR101-60</th>
<th>DR101-60-OE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
<td>±0.0001 nD 0–100 °Oechsle</td>
<td>±0.0001 nD 0–95 %Brix</td>
<td>±0.0001 nD 0–100 °Oechsle</td>
<td>±0.0001 nD 0–95 %Brix</td>
<td>±0.0001 nD 0–100 °Oechsle</td>
</tr>
<tr>
<td>Resolution</td>
<td>±0.0001 nD 0–100 °Oechsle</td>
<td>±0.0001 nD 0–95 %Brix</td>
<td>±0.0001 nD 0–100 °Oechsle</td>
<td>±0.0001 nD 0–95 %Brix</td>
<td>±0.0001 nD 0–100 °Oechsle</td>
</tr>
<tr>
<td>Temperature measurement</td>
<td>5–40 °C</td>
<td>5–40 °C</td>
<td>5–40 °C</td>
<td>5–40 °C</td>
<td>5–40 °C</td>
</tr>
<tr>
<td>Temperature accuracy</td>
<td>±0.1 °C</td>
<td>±0.1 °C</td>
<td>±0.1 °C</td>
<td>±0.1 °C</td>
<td>±0.1 °C</td>
</tr>
<tr>
<td>Temperature compensation</td>
<td>5–40 °C</td>
<td>5–40 °C</td>
<td>5–40 °C</td>
<td>5–40 °C</td>
<td>5–40 °C</td>
</tr>
<tr>
<td>Prism</td>
<td>Optical glass</td>
<td>Optical glass</td>
<td>Optical glass</td>
<td>Optical glass</td>
<td>Optical glass</td>
</tr>
<tr>
<td>Housing</td>
<td>Plastic</td>
<td>Plastic</td>
<td>Plastic</td>
<td>Plastic</td>
<td>Plastic</td>
</tr>
<tr>
<td>Dimensions in cm</td>
<td>12.0 x 7.0 x 1.0</td>
</tr>
<tr>
<td>Weight</td>
<td>500 g</td>
<td>200 g</td>
<td>160 g</td>
<td>160 g</td>
<td>160 g</td>
</tr>
<tr>
<td>Power supply</td>
<td>9 V Battery (Adaptor available separately)</td>
<td>1.5 V Battery</td>
<td>1.5 V Battery</td>
<td>1.5 V Battery</td>
<td>1.5 V Battery</td>
</tr>
</tbody>
</table>

DR201-95 and DR201-95OE

The DR201-95 is a compact digital handheld refractometer which eliminates any user-related reading errors of manual handheld refractometers. Specially developed for fast and easy quality control and process control, it has a wide measuring range for a refractive index scale and a sugar scale. One DR201-95 can thus often replace several existing instruments. For wine-growing, a special model is available with an Oechsle scale instead of a sugar scale. Both instruments are low-maintenance and are calibrated simply with distilled water. The 1.5 V battery lasts for over 1000 measurements.

DR101-60 und DR101-60-OE

As an entry-level model in digital refractometry, the DR101-60 covers many areas of application where the wide measurement range of the DR201-95 is not required. It offers excellent value for money, in terms of both procurement and operation. Calibration is also with distilled water. The waterproof case allows the DR101-60 to be rinsed under running water. This digital handheld refractometer also has an automatic temperature compensation feature, of course.

<image of DR301-95>

<image of DR201-95>

<image of DR101-60>
HR Series | Manual Hand-held Refractometers

Quick on-site measurements!

Manual handheld refractometers are for fast everyday use. They are particularly easy to use and very sturdy. Various scales and additional functions ensure that there is exactly the right handheld refractometer for many application areas. This makes for reliability when reading, as the measured value does not have to be converted.

Some models have an automatic temperature compensation feature which increases measurement precision for measurements which are performed at 10–40 °C instead of 20 °C. For calibration, distilled water is required, or else a small calibration plate is provided.

Fields of application

Determination of mixing ratios, quality and quantity inspection in the following industries:

- Beverages
- Food
- Sugar / sweeteners
- Chemicals
- Flavours
- Petrochemicals
- Cosmetics / hygiene
- Metallworking
- Pharmaceuticals
- Water / effluent
- Education / research

Model	Fig. No.	Measurement range	Accuracy	scale division	Temperature compensation	Thermometer	Field of application
HR10 | Fig. 1 | 0–10 °Brix | 0.1 °Brix | 0.1 °Brix | - | - | For sugar concentration in fruit juices, soft drinks, vegetables, foods and cooking lubricants
HR18-01 | Fig. 1 | 0–18 °Brix | 0.1 °Brix | 0.1 °Brix | - | - | For sugar concentration in fruit juices, soft drinks, vegetables, foods and cooking lubricants
HRK132 | Fig. 2 | 0–20 °Brix | 0.2 °Brix | 0.2 °Brix | 1 °Oechsle | - | For the measurement of Brix and alcohol content in must by either oechsle and Klosterneuburg scale
HRN20 | Fig. 2 | 0–20 °Brix | 0.2 °Brix | 0.2 °Brix | - | - | For sugar concentration in fruit juices, soft drinks, vegetables, foods and cooking lubricants
HRN32 | Fig. 2 | 0–22 °Brix | 0.2 °Brix | 0.2 °Brix | - | - | For sugar concentration in fruit juices, soft drinks, vegetables, foods and cooking lubricants
HR32 | Fig. 3 | 0–22 °Brix | 0.2 °Brix | 0.2 °Brix | automatically | - | For sugar concentration in fruit juices, soft drinks, vegetables, foods and cooking lubricants
HRN62 | Fig. 3 | 28–62 °Brix | 0.2 °Brix | 0.2 °Brix | - | - | For analysing chemical and technical liquids, such as oils, fats, coolants, lubricants
HR52 | Fig. 3 | 35–82 °Brix | 0.2 °Brix | 0.2 °Brix | automatically | - | For analysing chemical and technical liquids, such as oils, fats, coolants, lubricants
HR92 | Fig. 3 | 58–92 °Brix | 0.2 °Brix | 0.2 °Brix | 1 % | 1 % | For the examination of highly concentrated sugars, the determination of water content in honey and analyzing fats, lubricants and cooling oil
HR930 | Fig. 2 | 12–30 % Water content in honey | 0.1 % | Water content in honey | - | - | For the examination of highly concentrated sugars, the determination of water content in honey and analyzing fats, lubricants and cooling oil
HR100 | Fig. 5 | 0–90 °Brix | 0.2 °Brix | 0.2 °Brix | - | 0–36 °C | Universal hand refractometer with stage switch for all ranges. Adjustable prisms for sharp contours, direct and indirect light guidance for measurement of clear and opaque substances. With thermometer
HR100 | Fig. 5 | 1.333–1.517+d | 0.0005 d | 0.0005 d | - | 0–36 °C | Universal hand refractometer with stage switch for all ranges. Adjustable prisms for sharp contours, direct and indirect light guidance for measurement of clear and opaque substances. With thermometer
HR27-100 | Fig. 2 | 1.000–1.070 UG | 0.001 UG | 0.001 UG | 0.001 UG | - | - | For salinity analysis
HR16 | Fig. 1 | 1.333–1.375+d | 0.001 d | 0.001 d | 0.001 d | - | - | For salinity analysis
HR16 | Fig. 2 | 1.333–1.384+d | 0.001 d | 0.001 d | 0.001 d | - | - | For salinity analysis
HR418 | Fig. 2 | 0–12 g/dl | 0.2 g/dl | 0.0005 UG | 0.2 g/dl | 0.0005 UG | - | - | For the measurement of hemoglobin
HR418 | Fig. 2 | 0–90 °Brix | 1.000–1.050 UG | 0.2 g/dl | 0.0005 UG | 0.2 g/dl | 0.0005 UG | - | - | For the measurement of hemoglobin
HR418 | Fig. 2 | 0–22 °Brix | 0.2 °Brix | 0.2 °Brix | 0.2 °Brix | 0.2 °Brix | - | - | For the measurement of Oechsle, Brix and alcohol content in must
HR418 | Fig. 2 | 0–22 °Brix | 0.2 °Brix | 0.2 °Brix | 0.2 °Brix | 0.2 °Brix | - | - | For the measurement of Oechsle, Brix and alcohol content in must
HR418 | Fig. 2 | 0–22 °Brix | 0.2 °Brix | 0.2 °Brix | 0.2 °Brix | 0.2 °Brix | - | - | For the measurement of Oechsle, Brix and alcohol content in must
HR418 | Fig. 2 | 0–22 °Brix | 0.2 °Brix | 0.2 °Brix | 0.2 °Brix | 0.2 °Brix | - | - | For the measurement of Oechsle, Brix and alcohol content in must
HR71 | Fig. 3 | 0.000–2.000 UG | 0.0001 UG | 0.0001 UG | 0.0001 UG | - | - | For the measurement of Brix and alcohol content in must
HR71 | Fig. 3 | 0.000–2.000 UG | 0.0001 UG | 0.0001 UG | 0.0001 UG | - | - | For the measurement of Brix and alcohol content in must
HR71 | Fig. 3 | 0.000–2.000 UG | 0.0001 UG | 0.0001 UG | 0.0001 UG | - | - | For the measurement of Brix and alcohol content in must
HR71 | Fig. 3 | 0.000–2.000 UG | 0.0001 UG | 0.0001 UG | 0.0001 UG | - | - | For the measurement of Brix and alcohol content in must
HR71 | Fig. 3 | 0.000–2.000 UG | 0.0001 UG | 0.0001 UG | 0.0001 UG | - | - | For the measurement of Brix and alcohol content in must
HR71 | Fig. 3 | 0.000–2.000 UG | 0.0001 UG | 0.0001 UG | 0.0001 UG | - | - | For the measurement of Brix and alcohol content in must
HR71 | Fig. 3 | 0.000–2.000 UG | 0.0001 UG | 0.0001 UG | 0.0001 UG | - | - | For the measurement of Brix and alcohol content in must
HR71 | Fig. 3 | 0.000–2.000 UG | 0.0001 UG | 0.0001 UG | 0.0001 UG | - | - | For the measurement of Brix and alcohol content in must
HR71 | Fig. 3 | 0.000–2.000 UG | 0.0001 UG | 0.0001 UG | 0.0001 UG | - | - | For the measurement of Brix and alcohol content in must
HR25-800 | Fig. 4 | 0–80 °Brix | 0.5 °Brix | 0.5 °Brix | - | - | Universal hand refractometer with stage switch for all ranges. Adjustable prisms for sharp contours, direct and indirect light guidance for measurement of clear and opaque substances.
Gemstone refractometers are used for the classification and quality control of gemstones. The gemstone to be examined is simply placed on the prism with a drop of contact fluid. The refractive index of the gemstone is read through the ocular of the refractometer. The refractive index is an important parameter in classifying a mineral or gemstone. Each mineral has its typical refractive index, due to its chemical composition and crystalline structure. Our gemstone refractometers are characterised by their particularly sharp image and good readability. With the sodium filter that only lets through light with a wavelength of 589 nm, the refractometer can be used as a mobile unit with an ordinary light source or with sufficient ambient lighting. LED illumination is also available with a wavelength of 589 nm.

Model overview

<table>
<thead>
<tr>
<th>Standard Gem Refractometer</th>
<th>Professional Gem Refractometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER604</td>
<td>ER604-LED</td>
</tr>
<tr>
<td>ER601-NA</td>
<td>ER601-LED</td>
</tr>
<tr>
<td>Measurement range</td>
<td>1.33–1.81 nD</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.01 nD</td>
</tr>
<tr>
<td>Monochromator</td>
<td>No-Filler 589 nm</td>
</tr>
<tr>
<td>Illumination</td>
<td>LED 589 nm</td>
</tr>
<tr>
<td>Power supply Illumination</td>
<td>100–240 V</td>
</tr>
<tr>
<td>Prism</td>
<td>Optical glass</td>
</tr>
</tbody>
</table>

Peltier thermostat

PT31
This electronic water-bath thermostat with Peltier element is a versatile, high-performance instrument. In one application, for example, it can be used to set the correct refractometer temperature. It is extremely robust, compact and easy to operate. Because it is so small it does not take up valuable space in the laboratory.

Printer

CBM910
24 characters plain dot matrix printer for:
- Digital Refractometers from the DR6000 series
- Digital Abbe-Refractometer AR2008
- Digital Polarimeter from the P8000 Series
- Density Meters from the DS7000 Series

Optical archiving unit

AR42
This camera enables results to be archived with ease. The optical unit also detects the limit of wavelengths that are not visible to the human eye (infrared):
- High quality glass lens
- 30 images per second
- Snapshot function [1.3 MP]
- Detects the limit of invisible wavelengths (infrared)
- Includes inserter / adapter for eyepiece

Refractometer accessories

PT31

<table>
<thead>
<tr>
<th>Resolution</th>
<th>0.1 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating power</td>
<td>30 W</td>
</tr>
<tr>
<td>Cooling power</td>
<td>15 W</td>
</tr>
<tr>
<td>Power supply</td>
<td>115–230 V</td>
</tr>
<tr>
<td>Pump pressure</td>
<td>2000 Pa</td>
</tr>
<tr>
<td>Pump performance</td>
<td>20 l/h</td>
</tr>
<tr>
<td>Temperature</td>
<td>0–40 °C</td>
</tr>
<tr>
<td>Temperature accuracy</td>
<td>±0.2 °C</td>
</tr>
<tr>
<td>Bath volume</td>
<td>ca. 100 ml</td>
</tr>
<tr>
<td>Dimensions in cm</td>
<td>8.0 x 21.0 x 14.0</td>
</tr>
<tr>
<td>Weight</td>
<td>1.5 kg</td>
</tr>
</tbody>
</table>

CBM910

- Connector: USB
- Image frequency: 30 images/s
- Photo resolution: 1366 x 768 Pixel
- Video resolution: 640 x 480 Pixel
Flow-through cell with funnel

AR15
Flow-through cell with funnel upgrade for AR4 and AR2008.

Flow-through cell

AR16
Flow-through cell upgrade for continuous measurement with AR4 and AR2008.

Refractometer calibration solutions

• RI34 calibration solution 1.3400 nD (5 %Brix)
• RI39 calibration solution 1.3900 nD (35 %Brix)
• RI43 calibration solution 1.4300 nD (55 %Brix)
• RI48 calibration solution 1.4800 nD (76 %Brix)
• RI65 calibration solution 1.6500 nD
All bottles contain 30 cc and are supplied with a certificate.
Further Products available from A.KRÜSS Optronic GmbH

- Polarimeters
- Density Meters
- Microscopes
- Melting Point Meters
- Peltier Thermostat
- Cold Light Sources
- Spectroscopes
- Spectral Measuring Instruments
- UV Lamps
- Software
- Gemmological Instruments